Synthesis of Stable Prostacyclin Analogues from 2,3-Disubstituted Bicyclo[3.2.0]heptan-6-ones

By Roger F. Newton* and Alan H. Wadsworth, Chemical Research Department, Glaxo Group Research (Ware) Ltd., Ware, Herts. SG12 ODJ

Abstract

A short synthesis of 9-deoxy-6,9 α-methanoepoxy- Δ^{5}-prostaglandin F_{1} (14) from bicyclo[3.2.0]heptan-6-one (3) is described. The ketone (3) can be converted by known methods into the vinyl ether (8). In the presence of mercury(II) acetate at $100^{\circ} \mathrm{C}$, the 5 -hydroxyalk-1-enyl methyl ether (8) undergoes a novel intramolecular vinyl transetherification reaction to give the Δ^{2}-dihydropyran (9). Hydroboration-oxidation of the dihydropyran (9) furnished selectively the tetrahydropyran-3-ol (10). Subsequent elaboration via oxidation, Wittig olefination, and deprotection afforded 9 -deoxy- $6,9 \alpha$-methanoepoxy- Δ^{5}-prostaglandin F_{1} (14). The protected bicyclo-[3.2.0]heptan-6-one (16) underwent a ring expansion with diazomethane, producing a $1: 1$ mixture of the two homologated ketones (17) and (18). Wittig olefination and deprotection of these ketones provided 15-epi9 -deoxy-6,9 α-methano- Δ^{5}-prostaglandin $F_{1}(19)$ and its structural isomer (20). The two bicyclo[3.2.0]heptan-6ones (3) and (4) also led directly to a series of 9 -deoxy-6,9 α-cycloprostaglandins F_{1} via Wittig reactions.

A recent report ${ }^{1}$ of the preparation of ($5 Z$)-9-deoxy$6,9 \alpha$-methanoepoxy- Δ^{5}-prostaglandin $\mathrm{F}_{1}{ }^{2}$ (2), a stable analogue of prostacyclin (2), ${ }^{3}$ has prompted us to disclose our own synthesis of this compound (1) and some related work. The potent biological activity of prostacyclin (2) indicates its potential therapeutic usefulness as an antithrombotic agent. ${ }^{4}$ A major limitation, however, is the chemical instability of the enol ether group in (2) under physiological conditions, and this has resulted in a search for more stable analogues, having similar activity. ${ }^{5}$ Here, we describe the versatility of the readily available

(1)

(2)
bicyclo[3.2.0]heptan-6-ones ${ }^{6}$ (3) and (4) as intermediates in the synthesis of such compounds. The synthesis of 9 -deoxy-6,9 9 -methanoepoxy- Δ^{5}-prostaglandin F_{1} (14) described here (Scheme 1) is notably shorter than the recently published preparation. ${ }^{1}$

Previous work from our laboratories has shown that the ketone (3) can be oxidised regioselectively to the γ lactone (5) \dagger in almost quantitative yield by the action of buffered peracetic acid in dichloromethane at $-78{ }^{\circ} \mathrm{C}$ for 4 days. ${ }^{7}$ The hydroxy-groups in lactone (5) were then protected by formation of their tetrahydropyranyl ethers. The use of freshly distilled, dry dihydropyran, with pyridinium toluene- p-sulphonate ${ }^{8}$ as acid catalyst, gave the protected lactone (6) in quantitative yield without recourse to chromatographic purification. Reduction of the lactone (6) with di-isobutylaluminium hydride at $-78{ }^{\circ} \mathrm{C}$ afforded the lactol (7), also in quantitative yield. Treatment of the lactol (7) with 4 equiv. of the Wittig reagent derived from (methoxymethyl)triphenylphosphonium chloride and potassium t-butoxide in tetrahydrofuran furnished the acyclic vinyl ether (8) (87%) after chromatography. The transformation $(5) \longrightarrow(8)$ using slightly different reaction conditions has been reported previously by the Upjohn group. ${ }^{9}$

The cyclisation of the 5 -hydroxyalk-1-enyl methyl ether (8) to the Δ^{2}-dihydropyran (9) is the key step in Scheme 1. Retrosynthetic analysis and a literature survey ${ }^{10,11}$ had suggested that Δ^{2}-dihydropyrans such as (9) are the most synthetically useful precursors of tetrahydropyran- 3 -ones such as (11). The vinyl transetherification reaction (Scheme 2) is well established, ${ }^{12}$ but no literature precedent could be found for the intramolecular variant $(8) \longrightarrow(9)$. Since β-substituted vinyl ethers do undergo the intermolecular reaction, albeit with some difficulty, ${ }^{13}$ then the corresponding novel intramolecular reaction (to give a five- or six-membered ring), having a more favourable entropy factor, was considered possible. Preliminary studies with the vinyl

[^0]
(3)
(5)

$\mathrm{Ph}_{3} \stackrel{+}{\mathrm{P}} \mathrm{C}-\mathrm{H}\left[\mathrm{CH}_{2}\right]_{3} \mathrm{CO}_{2} \mathrm{~K}$
(13)

Scheme 1 Reagents: i, $\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}, \mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; ii, dihydropyran, pyridinium tosylate; iii, $\mathrm{Bu}^{\mathrm{H}}{ }_{2} \mathrm{AlH}$; iv, $\mathrm{Ph}_{3} \stackrel{+}{\mathrm{P}} \mathrm{C}_{\mathrm{C}} \mathrm{HOMe}$; $\mathbf{v}, \mathrm{Hg}(\mathrm{OAc})_{2}, 100{ }^{\circ} \mathrm{C}$; vi, 9 -borabicyclononane, then basic $\mathrm{H}_{2} \mathrm{O}_{2}$; vii, pyridinium chlorochromate, NaOAc; viii, compound (13); ix, 0.3 m aq. HCl , acetone
ether (12) ${ }^{\mathbf{1 4}}$ indicated that the intramolecular reaction catalysed by mercury(II) acetate was extremely slow in refluxing dichloromethane.

However, evaporation of the solution and pyrolysis of the residue until methanol was observed to condense in

Scheme 2
a cooler part of the apparatus promoted the desired reaction. Thus a homogeneous mixture of the vinyl ether (8) and 0.2 equiv. of freshly crystallised ${ }^{15}$ mercury(II) acetate was heated at $100^{\circ} \mathrm{C}$ and 20 mmHg for 2 h , in a bulb-to-bulb distillation apparatus, to give the Δ^{2} dihydropyran (9) (68%) after chromatography. The absence of any significant by-products in this reaction (t.l.c. analysis) justifies the initial choice of tetrahydropyranylation for hydroxy-group protection, and reflects the relatively low Lewis-acidity of mercury(II) acetate ($c f$. acetal by-product formation in ref. 13).

(12)

Conversion of Δ^{2}-dihydropyrans into tetrahydro-pyran-3-ols via regiospecific hydroboration-oxidation of the olefinic bond using diborane ${ }^{10}$ has ample precedent. Hydroboration of Δ^{2}-dihydropyran (9) with 9 -borabicyclo[3.3.1]nonane, ${ }^{16}$ followed by work-up with basic hydrogen peroxide, afforded the tetrahydropyran-3-ol (10) (84%) after chromatography. Oxidation of the alcohol (10) with buffered pyridinium chlorochromate under standard conditions ${ }^{17}$ was slow, did not go to completion, and led to some loss of the tetrahydropyranyl group in the octenol side chain. Six equiv. each of the oxidising agent and sodium acetate, however, resulted in a clean conversion into the tetrahydropyran3 -one (11) (92%).

Wittig reaction of the ketone (11) with the requisite ylide (13), deprotection with mineral acid, and chromatography furnished the desired prostacyclin analogue (14) as a gum (70%, homogeneous by t.l.c.) which slowly solidified. Crystallisation gave (土)-9-deoxy-6,9 α -methanoepoxy- Δ^{5}-prostaglandin $F_{1}(14)(44 \%)$ as a $9: 1$
mixture of isomers (h.p.l.c. analysis) at the newly formed olefinic bond. That this material was predominantly the biologically more interesting $5 Z$-isomer (1) was judged from its ${ }^{13} \mathrm{C}$ n.m.r. spectrum, which exhibited the mutual shielding effect of two cis-substituents on a double bond relative to the corresponding trans-configuration. ${ }^{18}$ Assignments for the major isomer were C-7 (32.6) and C-6a (65.5), and for the minor isomer C-7 (29.6) and C-6a (67.7). The shielding effect of $\mathrm{C}-4$ on $\mathrm{C}-6 \mathrm{a}$ ($5 Z$-configuration) and on C-7 ($5 E$) leads to the conclusion that the $5 Z / 5 E$ ratio is $9: 1$. This was later confirmed by the work of Skuballa, ${ }^{1}$ who succeeded in separating the two isomers and making configurational assignments by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy.

(15)

Prior to the above work we examined a potential synthesis of ($5 Z$)-9-deoxy- $6,9 \alpha$-methano- Δ^{5}-prostaglandin F_{1} (15) from the bicyclo[3.2.0]heptan-6-one epimer (3). Our initial studies were carried out using the bicyclo[3.2.0]heptan-6-one (4) having the unnatural C- 3^{\prime} configuration and are summarised in Scheme 3. When Gandolfi ${ }^{19}$ released the first details of a total synthesis of the carbon analogue (15) ${ }^{20}$ of prostacyclin (2) we decided not to pursue its preparation further and have thus only synthesised 15-epi-9-deoxy-6,9 α-methano- Δ^{5} prostaglandin F_{1} (19).

The less polar dihydroxy-ketone isomer (4) was initially protected (97% yield) by formation of its bis-t-butyldimethylsilyl ether (16), in order to eliminate hydroxygroup interactions with diazomethane, previously observed in the esterification of prostaglandin $\mathrm{F}_{2 \alpha}{ }^{21}$ The ring expansion of cyclobutanone (16) in methanol with ethereal diazomethane ${ }^{22}$ was monitored by g.l.c. to optimise the formation of monohomologated ketones, which inevitably react further to form bishomologated products, etc. Multiple elution preparative t.l.c. led to the separation of two major products (23% yield each) with almost identical i.r. spectral bands near $1730 \mathrm{~cm}^{-1}$ indicating the presence of a cyclopentanone group in each. Comparison of the two ${ }^{13} \mathrm{C}$ n.m.r. spectra (with offset decoupling) allows an unambiguous assignment of the pentalen-1-one structure (18) to the less polar isomer ($R_{F} 0.35$) and that of the pentalen-2-one (17) to the
(4)

(16)
ii $\mid 29 \%(16)+23 \%(17)+23 \%(18)$

(17)
iii, iv $\mid 74 \%$

(19)

(18)
iii, iv $\mid 58 \%$

(20)

Scheme 3 Reagents: i, $\mathrm{Bu}^{\mathrm{t}} \mathrm{Me}_{2} \mathrm{SiCl}$, imidazole, DMF; ii, $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{MeOH}$; iii, compound (13); iv, Bu NF
isomer of $R_{F} 0.27$. The characteristic features of the pentalen-1-one (18) spectrum, not compatible with the alternative structure (17), are the resonances for C-6a (doublet at $\delta 48.6$) and C-3 (triplet at $\delta 24.1$). A single enantiomer of the racemic pentalen-2-one (17) was subsequently described by Morton and Brokaw. ${ }^{23}$

The Wittig reaction of the pentalen-2-one (17) with 4 equiv. of ylide (13), followed by desilylation with tetrabutylammonium fluoride, afforded (\pm)-15-epi-9-deoxy$6,9 \alpha$-methano- Δ^{5}-prostaglandin F_{1} (19) (74%) as an inseparable mixture (by t.l.c.) of Δ^{5}-isomers (ratio $71: 29$). Such Wittig conditions were used by us routinely, and hence we never encountered the problem [enolisation of the ketone (17) with 1 equiv. of ylide (13)] initially met by Morton and Brokaw. ${ }^{23}$

Similar Wittig reactions (and desilylation as above where necessary) with ketones (18), (3), and (4) furnished the (\pm)-cycloprostaglandins $\mathrm{F}_{1}(20)(58 \%)$, (21) (73%),
and (22) (48%), respectively. All products were inseparable mixtures of isomers at the newly formed olefinic bonds (see Experimental section for ratios).

Of the prostacyclin analogues (14) and (19)-(22), only the cycloprostaglandin $F_{1}(21)$ showed activity as an

inhibitor of collagen-induced platelet aggregation. Interestingly, the homologated analogue (23), prepared as above but utilising the ylide (24), showed enhanced potency ($\mathrm{EC}_{50} 0.8 \mu \mathrm{~g} \mathrm{ml}^{-1}$).

EXPERIMENTAL
${ }^{1} \mathrm{H}$ N.m.r. spectra were recorded at 90 MHz on a Varian EM 390 spectrometer. ${ }^{13} \mathrm{C}$ N.m.r. spectra were recorded on a JEOL FX-100 spectrometer; chemical shifts are reported downfield from tetramethylsilane. I.r. spectra were obtained on a Perkin-Elmer 357 (or 377) spectrophotometer. H.p.l.c. analyses were carried out using either a Du Pont 830 Liquid Chromatograph or a Perkin-Elmer Series 2 Pump. For analytical t.l.c. Camlab ' Polygram' pre-coated silica gel plates were used, and for preparative t.l.c. Merck precoated silica gel plates of 2 mm thickness. Short-column chromatography was performed with Merck 7736 or Whatman SO TLC silica gel. Light petroleum refers to the fraction of b.p. $60-80^{\circ} \mathrm{C}$ and all solvents for chromatography were distilled before use. Reactions were carried out at ambient temperature except where otherwise stated. Distillations were accomplished by using the Büchi Kugelröhr (bulb-to-bulb) system and the temperatures reported are oven temperatures at distillation.
(3a $\alpha, 6 \mathrm{a} \alpha)-5 \beta$-Tetrahydropyran- $2-$ yloxy $-4 \alpha-\left[(\mathrm{E})-\left(3 \mathrm{~S}^{*}\right)-3\right.$ -tetrahydropyran-2-yloxyoct-1-enyl]perhydrocyclopenta[b]-
furan-2-one (6).-A solution of the dihydroxy-lactone (5) $(2.51 \mathrm{~g}, 9.36 \mathrm{mmol})$, dry dihydropyran ($2.8 \mathrm{ml}, 30 \mathrm{mmol}$), and pyridinium toluene- p-sulphonate ($250 \mathrm{mg}, 1 \mathrm{mmol}$) in dry dichloromethane (70 ml) was stirred for 18 h . Ether $(180 \mathrm{ml})$ was added and the mixture washed with water $(25 \mathrm{ml})$ and saturated aqueous sodium chloride (25 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give the protected lactone (6) ($4.06 \mathrm{~g}, 99 \%$) as a colourless oil homogeneous by t.l.c.; $\nu_{\text {max. }}\left(0.5 \%\right.$ solution in $\left.\mathrm{CHBr}_{3}\right) 1763(\mathrm{C}=\mathrm{O})$ and $973 \mathrm{~cm}^{-1}$ (trans $-\mathrm{CH}=\mathrm{CH}) ; \tau\left(\mathrm{CCl}_{4}\right) 4.4-4.9(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.14$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a} \alpha) 5.25-5.55\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{O}^{-} \mathrm{CH}-\mathrm{O}\right), 5.9-$ 6.8 (6 H , complex, $\mathrm{H}-5 \alpha, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}-\mathrm{O}$, and $2 \times \mathrm{CH}_{2}-\mathrm{O}$), $7.2-8.9\left(26 \mathrm{H}\right.$, complex), and $9.10\left(3 \mathrm{H}, \mathrm{br}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. ($3 \mathrm{a} \alpha, 6 \mathrm{a} \alpha)-5 \beta$-Tetrahydropyran-2-yloxy- $4 \alpha-\left[(\mathrm{E})-\left(3 \mathrm{~S}^{*}\right)-3\right.$ -tetrahydropyran-2-yloxyoct-1-enyl]perhydrocyclopenta [b]-
furan-2-ol (7).-Di-isobutylaluminium hydride (10 ml of a 2.0 m -solution in hexane; 20 mmol) was added dropwise to a stirred solution of the lactone (6) ($4.02 \mathrm{~g}, 9.17 \mathrm{mmol})$ in dry toluene (120 ml) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen. After stirring
for 1 h , a mixture of tetrahydrofuran (80 ml) and water (40 ml) was added and the resulting mixture stirred at ambient temperature for 2 h . The precipitate was filtered off and washed well with ether. The filtrate was diluted with water (100 ml) and the mixture equilibrated and separated. The aqueous layer was further extracted with ether ($4 \times 50 \mathrm{ml}$). The combined extracts were washed with saturated aqueous sodium chloride ($1 \times 50 \mathrm{ml}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give the lactol (7) (4.04 g, 100%) as a colourless oil homogeneous by t.l.c.; $v_{\max }(0.5 \%$ solution in $\left.\mathrm{CHBr}_{3}\right) 3580$ and $3370(\mathrm{OH})$, and $975 \mathrm{~cm}^{-1}$ (trans $-\mathrm{CH}=\mathrm{CH}$) ; $\tau\left(\mathrm{CCl}_{4}\right) 4.3-4.9(3 \mathrm{H}$, complex, $\mathrm{CH}=\mathrm{CH}$ and $\left.\mathrm{O}^{-} \mathrm{CH}-\mathrm{OH}\right), 5.2-5.7(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a} \alpha), 5.37(2 \mathrm{H}, \mathrm{br}, \mathrm{s}$, $2 \times \mathrm{O}-\mathrm{CH}-\mathrm{O}), 5.9-6.8(6 \mathrm{H}$, complex, $\mathrm{H}-5 \alpha, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}-$ O , and $2 \times \mathrm{CH}_{2}-\mathrm{O}$), $7.4-8.9$ (27 H , complex), and 9.10 (3 H , br, $\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}$).
2α-(3-Methoxyprop-2-enyl)-4 α-tetrahydropyran-2-yloxy- 3β -[(E)-(3R*)-3-tetrahydropyran-2-yloxyoct-1-enyl]cyclopentan1α-ol (8).-Methoxymethyltriphenylphosphonium chloride $(9.26 \mathrm{~g}, 27 \mathrm{mmol})$ was added in portions over 5 min to a stirred solution of potassium t-butoxide $(3.03 \mathrm{~g}, 27 \mathrm{mmol})$ in dry tetrahydrofuran $(70 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 \min at $0^{\circ} \mathrm{C}$ a solution of the lactol (7) (4.0 g, 9.1 mmol$)$ in dry tetrahydrofuran (13 ml) was added dropwise. The red suspension was stirred for 30 min at ambient temperature and then the reaction was quenched by addition of aqueous sodium chloride (30 ml). After equilibration and separation of the layers, the aqueous layer was extracted with ether $(3 \times 30 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by short-column chromatography on silica gel (550 g), eluting with ethyl acetate-light petroleum (3:7), to give a mixture of the cis- and trans-isomers (ratio $36: 64$ by n.m.r.) of the vinyl ether (8) ($3.69 \mathrm{~g}, 87 \%$) as a colourless oil; $\nu_{\text {max }}(0.5 \%$ solution in $\left.\mathrm{CHBr}_{3}\right) 3600$ and $3515(\mathrm{OH})$, $1658(\mathrm{C}=\mathrm{C}-\mathrm{OMe})$, and $972 \mathrm{~cm}^{-1}$ (trans $-\mathrm{CH}=\mathrm{CH}$) ; $\tau\left(\mathrm{CCl}_{4}\right) 3.75$ and $4.15(1 \mathrm{H}, \mathrm{d}$, $J 12 \mathrm{~Hz}$ for trans-isomer; d, $J 6 \mathrm{~Hz}$ for cis-isomer, $\mathrm{CH}=\mathrm{CH}$ $\mathrm{OMe}), 4.3-4.9(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}-\mathrm{O}), 5.1-5.8(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}-\mathrm{OMe}), 5.39(2 \mathrm{H}, \mathrm{br}$, s, two $\mathrm{O}-\mathrm{CH}-\mathrm{O}), 6.40$ and 6.55 $\left(3 \mathrm{H}\right.$, two s, $\left.\mathrm{OCH}_{3}\right), 5.8-6.8(7 \mathrm{H}$, complex, $\mathrm{H}-1 \beta, \mathrm{H}-4 \beta$, $\mathrm{CH}=\mathrm{CHCH}-\mathrm{O}$, and $\left.2 \times \mathrm{CH}_{2}-\mathrm{O}\right), 7.3-8.9(27 \mathrm{H}$, complex), and $9.10\left(3 \mathrm{H}, \mathrm{br}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; [Found (c.i. mass spec., $\left.\mathrm{NH}_{3}\right):\left(M+\mathrm{NH}_{4}\right)^{+}, 484.3625$. Calc. for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{6}:(M+$ $\left.\mathrm{NH}_{4}\right)$, 484.3638].
(4a $\alpha, 7 \mathrm{a} \alpha)-4,4 \mathrm{a}, 5,6,7,7 \mathrm{a}-$ Hexahydro-6 β-tetrahydropyran-2-yloxy-5 α-[(E)-(3S*)-3-tetrahydropyran-2-yloxyoct-1-enyl]cyclopenta $[\mathrm{b}]$ pyran (9).-A solution of the hydroxy-vinyl ether (8) ($3.62 \mathrm{~g}, 7.75 \mathrm{mmol}$) and mercury(II) acetate (495 mg, freshly crystallised from ethanol, 1.55 mmol) in dry dichloromethane (10 ml) was evaporated to give a colourless, viscous oil, which was heated (in a Büchi Kugelröhr apparatus) at $100^{\circ} \mathrm{C}$ and 20 mmHg for 2 h . The residue was treated with aqueous 0.5 N -sodium carbonate (100 ml) and extracted with ether $(3 \times 70 \mathrm{ml})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$ and $\left.\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and evaporated to give an oil. Short-column chromatography on silica gel (350 g), eluting with triethylamine-ethyl acetate-light petroleum ($1: 40: 160$), gave the cyclic vinyl ether (9) $(2.30 \mathrm{~g}$, 68%) as a colourless oil; $\nu_{\text {max. }}\left(0.5 \%\right.$ solution in $\left.\mathrm{CHBr}_{3}\right)$ $1645(\mathrm{C}=\mathrm{C}-\mathrm{O})$ and $972 \mathrm{~cm}^{-1}$ (trans $\left.-\mathrm{CH}=\mathrm{CH}\right)$; $\tau\left(\mathrm{CCl}_{4}\right) 3.79$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{d}, J 6 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}=\mathrm{CH}), 4.3-4.9(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}-$ $\mathrm{CH}-\mathrm{O}), 5.3-5.65\left(3 \mathrm{H}\right.$, complex, $\mathrm{O}-\mathrm{CH}=\mathrm{CH}$ and $2 \times \mathrm{O}^{-}$ $\mathrm{CH}-\mathrm{O}$), $5.8-6.5\left(5 \mathrm{H}\right.$, complex, $\mathrm{H}-6 \alpha, \mathrm{H}-7 \mathrm{a} \alpha, \mathrm{CH}=\mathrm{CHC} H^{-}$ O , and one each of $\left.2 \times \mathrm{CH}_{2}-\mathrm{O}\right), 6.5-6.8(2 \mathrm{H}, \mathrm{m}$, one each of $\left.2 \times \mathrm{CH}_{2}-\mathrm{O}\right), 7.3-8.9(26 \mathrm{H}$, complex), and $9.10(3 \mathrm{H}$,
br, $\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}$) ; [Found (c.i. mass spec., $\left.\mathrm{NH}_{3}\right):(M+$ $\left.\mathrm{NH}_{4}\right)^{+}$, 452.3356. $\quad \mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{5}$ requires $\left.\left(M+\mathrm{NH}_{4}\right), 452.3376\right]$.
(4a $\alpha, 7 \mathrm{a} \alpha)$-6 β-Tetrahydropyran-2-yloxy-5 $\alpha-\left[(\mathrm{E})-\left(3 \mathrm{~S}^{*}\right)-3-\right.$ tetrahydropyran-2-yloxyoct-1-enyl]perhydrocyclopenta [b] pyran-3-ol (10).-9-Borabicyclo[3.3.1]nonane (62 ml of a 0.13 m -solution in dry tetrahydrofuran, 8.3 mmol) was added dropwise to a stirred solution of the cyclic vinyl ether (9) ($2.04 \mathrm{~g}, 4.69 \mathrm{mmol}$) in dry tetrahydrofuran (10 ml) under nitrogen. After 17 h , the mixture was poured into ethanol (60 ml) and treated with aqueous 5 N -sodium hydroxide (9 ml) and $28 \% \mathrm{w} / \mathrm{v}$ aqueous hydrogen peroxide $(18 \mathrm{ml})$. After the ensuing exothermic reaction had slowed down, the mixture was heated at $50^{\circ} \mathrm{C}$ for 3 h , cooled, diluted with saturated aqueous sodium chloride (500 ml), and extracted with ether ($3 \times 100 \mathrm{ml}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a colourless oil. Short-column chromatography on silica gel (500 g), eluting with triethylamine-ethyl acetate-light petroleum (1:66: 132), gave the alcohol (10) ($1.79 \mathrm{~g}, 84 \%$) as a colourless oil; $\nu_{\text {max. }}\left(0.1 \%\right.$ solution in $\left.\mathrm{CCl}_{4}\right) 3635(\mathrm{OH})$ and $972 \mathrm{~cm}^{-1}$ (trans$\mathrm{CH}=\mathrm{CH}) ; \tau\left(\mathrm{CCl}_{4}\right) 4.4-4.75(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.25-5.5$ $(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{O}-\mathrm{CH}-\mathrm{O}), 5.9-6.5(7 \mathrm{H}$, complex, H-3, H-5 α, $\mathrm{H}-6 \mathrm{a} \alpha, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}-\mathrm{O}$, and one each of $2 \times \mathrm{CH}_{2}-\mathrm{O}$ and $\mathrm{H}-2), 6.5-6.8\left(2 \mathrm{H}, \mathrm{m}\right.$, one each of $\left.2 \times \mathrm{CH}_{2}-\mathrm{O}\right), 7.11$ (1 $\mathrm{H}, \mathrm{t}, J 12 \mathrm{~Hz}$, one of $\mathrm{H}-2), 7.3-9.0(27 \mathrm{H}$, complex), and $9.10\left(3 \mathrm{H}, \mathrm{br}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; [Found (c.i. mass spec., NH_{3}) $\left(M+\mathrm{NH}_{4}\right)^{+}, 470.3469 . \quad \mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{6}$ requires $\left(M+\mathrm{NH}_{4}\right)$, 470.3481].
(4a $\alpha, 7 \mathrm{a} \alpha)-6 \beta-T e t r a h y d r o p y r a n-2-y l o x y-5 \alpha-\left[(\mathrm{E})-\left(3 \mathrm{~S}^{*}\right)-3-\right.$ tetrahydropyran-2-yloxyoct-1-enyl]perhydrocyclopenta[b]-pyran-3-one (11).-A suspension of pyridinium chlorochromate ($2.28 \mathrm{~g}, 10.6 \mathrm{mmol}$), sodium acetate ($850 \mathrm{mg}, 10.6$ mmol), and the alcohol (10) ($800 \mathrm{mg}, 1.77 \mathrm{mmol}$) in dry dichloromethane (25 ml) was stirred for 2.5 h . Dichloromethane was removed by evaporation and the residue extracted many times with ether. The combined extracts were filtered through a pad of silica gel (Merck 7736), washing well with more ether. The filtrate was washed with saturated aqueous ammonium chloride $(1 \times 20 \mathrm{ml})$ and aqueous 8% sodium hydrogencarbonate ($2 \times 20 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give the ketone (11) (730 $\mathrm{mg}, \mathbf{9 2} \%)$, homogeneous by t.l.c.; $\nu_{\text {max. }}(0.5 \%$ solution in $\left.\mathrm{CHBr}_{3}\right) 1730(\mathrm{C}=\mathrm{O})$ and $972 \mathrm{~cm}^{-1}($ trans $-\mathrm{CH}=\mathrm{CH}) ; \tau\left(\mathrm{CDCl}_{3}\right)$ $4.3-4.75(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.2-5.45\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{O}^{-}\right.$ $\mathrm{CH}-\mathrm{O}), 5.8-6.3\left(5 \mathrm{H}\right.$, complex, $\mathrm{H}-5 \alpha, \mathrm{H}-6 \mathrm{a} \alpha, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}^{-}$ O , and one each of $\left.2 \times \mathrm{CH}_{2}-\mathrm{O}\right), 6.3-6.7(2 \mathrm{H}, \mathrm{m}$, one each of $2 \times \mathrm{CH}_{2}-\mathrm{O}$), 5.85 and $6.23(2 \mathrm{H}, 2$ components of AB system, $J 18 \mathrm{~Hz}, \mathrm{H}-2$), $7.2-7.7(4 \mathrm{H}$, complex, including $\mathrm{H}-4$ and $\mathrm{H}-5 \beta$), $7.7-8.9$ (22 H , complex), and $9.10(3 \mathrm{H}$, br, $\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}$). A sample for analysis was obtained by preparative t.l.c. (silica gel, ether) (Found: C, 69.35; H, 9.6. Calc. for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{8}$: $\mathrm{C}, 69.3 ; \mathrm{H}, 9.4 \%$).
(\pm)-9-Deoxy-6,9 α-methanoepoxy- Δ^{5}-prostaglandin F_{1} (14). -Dry tetrahydrofuran (50 ml) was added to a stirred mixture of potassium t-butoxide ($1.35 \mathrm{~g}, 12 \mathrm{mmol}$) and (4carboxybutyl)triphenylphosphonium bromide $(2.66 \mathrm{~g}, 6$ mmol) under nitrogen. The resulting red suspension was stirred for 30 min . A solution of the ketone (11) (681 mg , 1.51 mmol) in dry tetrahydrofuran (10 ml) was then added rapidly in a single portion with vigorous stirring and the resulting dark orange suspension was stirred for 2.5 h . Saturated aqueous ammonium chloride (200 ml) was added with stirring and the mixture extracted with ether (4×50 $\mathrm{ml})$. The combined extracts were evaporated and the wet residue was dissolved in acetone (50 ml) and 0.3 m -hydro-
chloric acid (10 ml). The yellow solution was left for 16 h . Acetone was removed by evaporation and the aqueous residue basified with aqueous 2 N -sodium hydroxide. The resulting orange-brown solution was washed with ether $(2 \times 50 \mathrm{ml})$, acidified with 2 N -hydrochloric acid, and extracted with ethyl acetate $(4 \times 50 \mathrm{ml})$. The combined extracts were washed with saturated aqueous sodium chloride ($1 \times 10 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give a viscous oil. Short-column chromatography on silica gel (50 g), eluting with acetic acid-ethyl acetate ($2: 100$), gave the acid (14) ($385 \mathrm{mg}, 70 \%$) as a viscous gum, homogeneous by t.l.c. Crystallisation from ether at $-20{ }^{\circ} \mathrm{C}$ gave the acid (14) (243 mg) as a colourless solid, m.p. 79$80^{\circ} \mathrm{C}$; $\nu_{\text {max }}\left(0.5 \%\right.$ solution in $\left.\mathrm{CHBr}_{3}\right) 3580(\mathrm{OH}), 1735(\mathrm{C}=\mathrm{O}$, acid, monomer), 1705 ($\mathrm{C}=\mathrm{O}$, acid, dimer), and $970 \mathrm{~cm}^{-1}$ (trans- $\mathrm{CH}=\mathrm{CH}$); $\tau\left(\mathrm{CDCl}_{3}\right) 4.28(3 \mathrm{H}, \mathrm{vbr}, \mathrm{s}, \mathrm{OH}), 4.3-4.65$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13$ and $\mathrm{H}-14), 4.82$ (ca. $1 \mathrm{H}, \mathrm{br}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{H}-5$), 5.51 (ca. $1 \mathrm{H}, \mathrm{d}, J 13 \mathrm{~Hz}$, one of $\mathrm{H}-6 \mathrm{a}$ of $5 Z$-isomer), $5.8-6.3(3 \mathrm{H}$, complex, $\mathrm{H}-9, \mathrm{H}-11$, and H-15), 6.23 (ca. $1 \mathrm{H}, \mathrm{d}, J 13 \mathrm{~Hz}$, one of $\mathrm{H}-6 \mathrm{a}$ of $5 Z$-isomer $), 7.3-8.9(20 \mathrm{H}$, complex), $9.10(3 \mathrm{H}, \mathrm{br}, \mathrm{t}, \mathrm{H}-20)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 5 Z$-isomer: 176.9 (s, C-1), 135.8 (d, C-14), 132.1 ($\mathrm{s}, \mathrm{C}-6$), 131.9 (d, C-13), 124.6 (d, C-5), 78.1 (d, C-9), 77.2 (d, C-11), 73.1 (d, C-15), 65.5 ($\mathrm{t}, \mathrm{C}-6 \mathrm{a}$), 53.3 (d, C-12), 44.8 (d, C-8), 40.7 ($\mathrm{t}, \mathrm{C}-10$), 36.9 (t, C-16), 33.2 (C-2), 32.6 (C-7), 31.7 (C-18), 26.3 (C-4), 25.2 (C-17), 24.6 (C-3), 22.6 (t, C-19), 14.0 (q, C-20) ; $5 E-$ isomer (where distinguishable): 135.3 (d, C-14), $125.8(\mathrm{~d}$, C-5), 79.1 (d, C-9), 77.8 (d, C-11), 72.8 (d, C-15), 67.7 (C-6a), 52.7 (C-12), 41.1 (C-10), 29.6 (C-7), with an approximate $5 Z: 5 E$ isomer ratio of $9: 1$; h.p.l.c. analysis ($20 \mathrm{~cm} \times$ $5 \mathrm{~mm} 10 \mu$ silica gel, $91: 9: 0.5$ hexane-ethanol-acetic acid) showed an isomer ratio of $90.5: 9.5$, with the more polar isomer predominating (Found: C, 68.85; H, 9.35. Calc. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{5}$: C, 68.8 ; $\mathrm{H}, 9.35 \%$).

A second crop of acid (14) (95 mg), m.p. $65-78^{\circ} \mathrm{C}$, was obtained with a corresponding isomer ratio of 71:29 (h.p.l.c. analysis).
$(1 \alpha, 5 \alpha)-3 \beta-(t-$-Butyldimethylsilyloxy $)-2 \alpha-\left[(\mathrm{E})-\left(3 \mathrm{R}^{*}\right)-3-(t-\right.$ butyldimethylsilyloxy)oct-1-enyl]bicyclo[3.2.0]heptan-6-one (16).-A solution of the diol (4) $(2.60 \mathrm{~g}, 10.3 \mathrm{mmol})$, t butyldimethylsilyl chloride ($4.40 \mathrm{~g}, 26.8 \mathrm{mmol}$), and imidazole ($3.86 \mathrm{~g}, 56.8 \mathrm{mmol}$) in dry dimethylformamide (50 ml) was stirred for 16 h , poured into water (250 ml), and extracted with light petroleum ($4 \times 50 \mathrm{ml}$). The combined extracts were washed with water $(2 \times 40 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2}-\right.$ SO_{4}), and evaporated, and the residue was distilled to give the ketone (16) ($4.80 \mathrm{~g}, 97 \%$) as an almost colourless oil, b.p. $150-160{ }^{\circ} \mathrm{C}$ at $0.05-0.1 \mathrm{mmHg} ; \nu_{\max }(0.5 \%$ solution in $\left.\mathrm{CHBr}_{3}\right) 1773(\mathrm{C}=\mathrm{O})$ and $970 \mathrm{~cm}^{-1}($ trans $-\mathrm{CH}=\mathrm{CH}) ; \tau$ $\left(\mathrm{CDCl}_{3}\right) 4.35-4.85(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.90(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha)$, $5.97(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}-\mathrm{O}), 6.39(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \alpha), 6.75-6.9$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 7.1-7.45(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \alpha$ and $\mathrm{H}-2 \beta), 7.75-$ 8.3 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), $84 .-8.9\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), 9-9.25 ($21 \mathrm{H}, 2 \times \mathrm{s}$, and br, t, $2 \times \mathrm{CMe}_{3}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $9.93\left(12 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 212.3(\mathrm{~s}, \mathrm{C}-6), 133.8$ (d, C-2'), 130.0 (d, C-1'), 80.9 (d, C-3), 73.2 (d, C-3'), 63.1 (d, $\mathrm{C}-5), 55.9(\mathrm{~d}, \mathrm{C}-2), 52.5(\mathrm{t}, \mathrm{C}-7), 38.9(\mathrm{t}, \mathrm{C}-4), 38.2\left(\mathrm{t}, \mathrm{C}-4^{\prime}\right)$, 33.8 (d, C-1), 31.6 (t, C-6'), 25.8 and $\left.25.5(2 \times \mathrm{q}, 2 \times \mathrm{CMe})_{3}\right)$, 24.9 (t, C-5'), 22.6 (t, C-7'), 18.2 and $17.8\left(2 \times \mathrm{s}, 2 \times \mathrm{CMe}_{3}\right)$, $13.9\left(\mathrm{q}, \mathrm{C}-8^{\prime}\right)$, and $-4.2,-4.7,-5.0$, and $-5.0(4 \times \mathrm{q}$, $2 \times \mathrm{SiMe}_{2}$) (Found: $\mathrm{C}, 67.75 ; \mathrm{H}, 11.05 . \mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires $\mathrm{C}, 67.45 ; \mathrm{H}, \mathbf{1 0 . 9} \%$).

Ring expansion of $(1 \alpha, 5 \alpha)-3 \beta-(t-B u t y l d i m e t h y l$ silyloxy $)-2 \alpha-$ [(E)-(3R*)-3-(t-butyldimethylsilyloxy)oct-1-enyl]bicyclo-
[3.2.0]heptan-6-one (16) with Diazomethane.-A solution of
the ketone (16) ($481 \mathrm{mg}, 1 \mathrm{mmol}$) in methanol (5 ml) was treated with portions of ethereal diazomethane at hourly intervals until monitoring by g.l.c. analysis (2\% OV 17 ; $250{ }^{\circ} \mathrm{C}$) showed that the peak area of the major product (retention time 14.5 min) was ca. 50% of the total peak area [ketone (16) ca. 40%, retention time 10 min ; minor product ca. 10%, retention time 20 min ; trace product $1-2 \%$, retention time 27 min$]$. The total amount of diazomethane added was that derived from 1.5 g of N-methyl $-N$-nitroso-toluene- p-sulphonamide (' Diazald '). T.l.c. analysis (silica gel; acetone-dichloromethane, $1: 100$) showed the ketone (16) with $R_{\mathrm{F}} 0.47$, two major products with $R_{\mathrm{F}} 0.35$ and 0.27 , and a minor product with $R_{\mathrm{F}} 0.21$.

Evaporation left an oil which was purified by short-column chromatography on silica gel (100 g). Elution with dichloromethane gave unchanged ketone (16) ($141 \mathrm{mg}, 29 \%$) as an oil, identical (t.l.c., i.r.) with an authentic sample. Further elution with acetone-dichloromethane ($1: 99$) gave the products with $R_{\mathrm{F}} 0.35,0.27$, and 0.21 as a mixture (334 mg). Purification of this mixture by preparative t.l.c. [silica gel, three elutions with acetone-dichloromethane ($1: 200$)] gave the three separated components: $R_{\mathrm{F}} 0.35(124 \mathrm{mg}), R_{\mathrm{F}} 0.27$ (129 mg), and $R_{\mathrm{F}} 0.21(61 \mathrm{mg})$. Distillation of the component $R_{\mathrm{F}} 0.35$ gave ($3 \mathrm{a} \alpha, 6 \mathrm{a} \alpha$)-5 β-(t-butyldimethylsilyloxy)$4 \alpha-\left[(\mathrm{E})-\left(3 \mathrm{~S}^{*}\right)-3\right.$-(t-butyldimethylsilyloxy)oct-1-enyl]perhydro-pentalen-1-one (18) ($116 \mathrm{mg}, 23 \%$) as a colourless oil, b.p. $170^{\circ} \mathrm{C}$ at 0.05 mmHg ; $\nu_{\text {max. }}\left(0.5 \%\right.$ solution in $\left.\mathrm{CHBr}_{3}\right) 1728$ ($\mathrm{C}=\mathrm{O}$) and $968 \mathrm{~cm}^{-1}($ trans $-\mathrm{CH}=\mathrm{CH}) ; \tau\left(\mathrm{CDCl}_{3}\right) 4.35-4.8(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.96(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \alpha), 6.17(1 \mathrm{H}, \mathrm{q}, J 6 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CHCH}-\mathrm{O}), 7.3-8.9(17 \mathrm{H}$, complex), $9-9.25(21 \mathrm{H}$, $2 \times \mathrm{s}$ and br, $\mathrm{t}, 2 \times \mathrm{CMe}_{3}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $9.98(12 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 222.1(\mathrm{~s}, \mathrm{C}-1), 135.3\left(\mathrm{~d}, \mathrm{C}-2^{\prime}\right), 129.9$ (d, C-1'), 78.7 (d, C-5), 73.5 (d, C-3'), 56.6 (d, C-4), 48.6 (d, C-6a), 43.7 (d. C-3a), 38.3 ($\mathrm{t}, \mathrm{C}-4^{\prime}$), 37.6 ($\mathrm{t}, \mathrm{C}-6$), 35.9 ($\mathrm{t}, \mathrm{C}-2$), $31.8\left(\mathrm{t}, \mathrm{C}-6^{\prime}\right), 25.8$ and $25.7\left(2 \times \mathrm{q}, 2 \times \mathrm{CMe}_{3}\right)$, 24.8 ($\mathrm{t}, \mathrm{C}-5^{\prime}$), 24.1 ($\mathrm{t}, \mathrm{C}-3$), 22.6 ($\mathrm{t}, \mathrm{C}-7^{\prime}$), 18.2 and 18.0 $\left(2 \times \mathrm{s}, 2 \times \mathrm{CMe}_{3}\right), 14.1\left(\mathrm{q}, \mathrm{C}-8^{\prime}\right)$, and $-4.1,-4.6,-4.6$, and $-4.8\left(4 \times \mathrm{q}, 2 \times \mathrm{SiMe}_{2}\right)$ (Found: C, 68.15; H, 11.15 . $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires $\mathrm{C}, 67.95 ; \mathrm{H}, \mathbf{1 1 . 0} \%$).

Distillation of the component $R_{\mathrm{F}} 0.27$ gave ($3 \mathrm{a} \alpha, 6 \mathrm{a} \alpha$)-5 β -(t-butyldinethylsilyloxy)-4 $\alpha-\left[(E)-\left(3 S^{*}\right)\right.$-3-(t-butyldimethylsilyloxy) oct-1-enyl]perhydropentalen-2-one (17) (117 mg , 23%) as a colourless oil, b.p. $170^{\circ} \mathrm{C}$ at 0.05 mmHg ; $\nu_{\text {max }}$ (0.5% solution in CHBr_{3}) $1730\left(\mathrm{C}=\mathrm{O}\right.$, and $968 \mathrm{~cm}^{-1}$ (trans$\mathrm{CH}=\mathrm{CH}) ; \tau\left(\mathrm{CDCl}_{3}\right) 4.35-4.8(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.85-6.1$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \alpha), 6.09(1 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}-\mathrm{O}), 7.15-$ $8.3(8 \mathrm{H}$, complex), $8.3-8.9(9 \mathrm{H}$, complex), $9-9.25(21 \mathrm{H}$, $2 \times \mathrm{s}$ and $\mathrm{br}, \mathrm{t}, 2 \times \mathrm{CMe}_{3}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $9.97(12 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{SiMe}_{2}\right) ; \quad \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 219.7$ (s, C-2), 135.3 (d, C-2'), 129.8 (d, C-1 ${ }^{\prime}$), 78.9 (d, C-5), 73.4 (d, C-3'), 57.5 (d, C-4), 45.8 ($\mathrm{t}, \mathrm{C}-3$), 43.1 ($\mathrm{t}, \mathrm{C}-1$), 42.7 (d, C-3a), 42.3 ($\mathrm{t}, \mathrm{C}-6$), 38.3 ($\mathrm{t}, \mathrm{C}-4^{\prime}$), 35.5 (d, C-6a), 31.8 (t, C- 6^{\prime}), 25.8 and $25.8(2 \times \mathrm{q}$, $\left.2 \times \mathrm{CMe}_{3}\right), 24.8\left(\mathrm{t}, \mathrm{C}-5^{\prime}\right), 22.6\left(\mathrm{t}, \mathrm{C}-7^{\prime}\right), 18.2$ and $18.0(2 \times \mathrm{s}$, $\left.2 \times C \mathrm{Me}_{3}\right), \quad 14.1\left(\mathrm{q}, \mathrm{C}-8^{\prime}\right)$, and $-4.1,-4.1,-4.6$ and $-4.6\left(4 \times \mathrm{q}, 2 \times \mathrm{SiMe}_{2}\right)$ (Found: C, 67.9; H, 10.9. Calc. for $\left.\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{O}_{3} \mathrm{Si}_{2}: \mathrm{C}, 67.95 ; \mathrm{H}, 11.0 \%\right)$.
(\pm)-15-epi-9-Deoxy-6, 9α-methano- Δ^{5}-prostaglandin $\quad F_{1}$ (19).-Dry tetrahydrofuran (50 ml) was added to a stirred mixture of potassium t-butoxide ($1.22 \mathrm{~g}, 10.9 \mathrm{mmol}$) and (4-carboxybutyl)triphenylphosphonium bromide (2.42 g , 5.45 mmol) under nitrogen. The resulting red suspension was stirred for 30 min . A solution of the more polar homologated ketone (17) ($674 \mathrm{mg}, 1.36 \mathrm{mmol}$) in dry tetrahydrofuran (10 ml) was then added rapidly in a single portion with vigorous stirring and the resulting dark orange suspension
stirred for 1 h . Saturated aqueous ammonium chloride (40 ml) was added, followed by 2 N -hydrochloric acid (5 ml), with stirring, and the mixture was extracted with ethyl acetate $(3 \times 50 \mathrm{ml})$. The combined extracts were washed with saturated aqueous sodium chloride, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a viscous oil. Short-column chromatography on silica gel (100 g), eluting with ethyl acetatelight petroleum ($1: 4$), gave the Wittig product $(670 \mathrm{mg})$ as a gum; $\nu_{\max }$ (film) $1708 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; homogeneous by t.l.c. ($R_{\mathrm{F}} 0.12$ with silica gel; ethyl acetate-light petroleum, $1: 9$). A solution of this gum and tetra-n-butylammonium fluoride $(2.6 \mathrm{~g}, 10 \mathrm{mmol})$ in dry tetrahydrofuran $(15 \mathrm{ml})$ was left at $40-45^{\circ} \mathrm{C}$ for 24 h , poured into water (300 ml), and extracted with ethyl acetate $(4 \times 50 \mathrm{ml})$. The combined extracts were washed with saturated aqueous sodium chloride ($1 \times$ $20 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give an oil. Short-column chromatography on silica gel (50 g), eluting with acetic acid-ethyl acetate-light petroleum (1:100:100) followed by acetic acid-ethyl acetate ($1: 200$), gave the acid (19) ($352 \mathrm{mg}, 74 \%$) as a colourless gum; $v_{\max }(0.5 \%$ solution in $\left.\mathrm{CHBr}_{3}\right) 3590(\mathrm{OH}), 3490(\mathrm{OH}$, acid, monomer), 1735 ($\mathrm{C}=\mathrm{O}$, acid, monomer), 1705 ($\mathrm{C}=\mathrm{O}$, acid, dimer), and 970 cm^{-1} (trans- $\mathrm{CH}=\mathrm{CH}$) ; $\tau\left(\mathrm{CDCl}_{3}\right) 4.2-5.1(5 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{OH}$, $\mathrm{H}-13$ and $\mathrm{H}-14), 4.80(1 \mathrm{H}, \mathrm{br}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{H}-5) 5.94(1 \mathrm{H}, \mathrm{m}$, H-11), $6.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 7.3-8.9(23 \mathrm{H}$, complex), and $9.10(3 \mathrm{H}, \mathrm{br}, \mathrm{t}, \mathrm{H}-20)$ (Found: C, 71.55 ; H, 10.05 . Calc. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4}$: $\mathrm{C}, 71.95 ; \mathrm{H}, 9.8 \%$). H.p.l.c. analysis $(20 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ Partisil 10, $24: 1$ ethyl acetate-acetic acid) showed the isomer ratio at the newly formed olefinic bond to be $71: 29$, with the more polar isomer predominating.

(\pm)-15-epi-9-Deoxy-la-homo- Δ^{4}-5, 9α-cycloprostaglandin

 $F_{1}(20)$.-The less polar homologated ketone (18) (674 mg , 1.36 mmol) and (4-carboxybutyl)triphenylphosphonium bromide ($2.42 \mathrm{~g}, 5.45 \mathrm{mmol}$) were used in a Wittig reaction in the manner already described for the isomer (17). Shortcolumn chromatography on silica gel (100 g), eluting with ethyl acetate-light petroleum ($\mathbf{1 : 9)}$ followed by ethyl acetate-light petroleum ($1: 4$), gave the Wittig product (530 mg) as a gum; $\nu_{\text {max. }}$ (film) $1708 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}$); homogeneous by t.l.c. ($R_{\mathrm{F}} 0.07$, silica gel; ethyl acetate-light petroleum, $1: 9$). This gum was desilylated with tetra-nbutylammonium fluoride ($2.50 \mathrm{~g}, 9.6 \mathrm{mmol}$) in the manner already described. The resulting viscous oil was purified by short-column chromatography on silica gel (50 g). Elution with acetic acid-ethyl acetate-light petroleum ($1: 100: 100$) followed by acetic acid-ethyl acetate ($1: 200$), gave the acid (20) ($274 \mathrm{mg}, 58 \%$) as a colourless gum which slowly crystallised; $v_{\max }\left(0.5 \%\right.$ solution in $\left.\mathrm{CHBr}_{3}\right) 3585$ $(\mathrm{OH}), 3485(\mathrm{OH}$, acid, monomer), $1735 \mathrm{sh}(\mathrm{C}=\mathrm{O}$, acid, monomer), 1705 (C=O, acid, dimer), and $970 \mathrm{~cm}^{-1}$ (trans$\mathrm{CH}=\mathrm{CH}) ; \tau\left(\mathrm{CDCl}_{3}\right) 4.3-4.5(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13$ and $\mathrm{H}-14)$, $4.5-5.1(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{OH}), 4.88(1 \mathrm{H}, \mathrm{br}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{H}-4)$, $5.92(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 6.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 7.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9)$, $7.4-8.9$ (22 H , complex), and $9.10(3 \mathrm{H}$, br, t, H-20); [Found: (c.i. mass spec., $\left.\mathrm{NH}_{3}\right):\left(M+\mathrm{NH}_{4}\right)^{+}, 368.2798$. $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4}$ requires $\left.\left(M+\mathrm{NH}_{4}\right), 368.2801\right]$. H.p.l.c. analysis ($20 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ Partisil 10; 24:1 ethyl acetate-acetic acid) showed the isomer ratio at the newly formed olefinic bond to be $86: 14$, with the less polar isomer predominating.(\pm)-9-Deoxy- $\Delta^{5}-6,9 \alpha-c y c l o p r o s t a g l a n d i n ~ F_{1}(21)$.-(4-Carboxybutyl)triphenylphosphonium bromide ($1.77 \mathrm{~g}, 4 \mathrm{mmol}$) was added to a stirred solution of potassium t-butoxide ($900 \mathrm{mg}, 8 \mathrm{mmol}$) in dry tetrahydrofuran (40 ml) under nitrogen. After 10 min , a solution of the more polar di-
hydroxy-ketone (3) ($252 \mathrm{mg}, 1 \mathrm{mmol}$) in dry tetrahydrofuran (5 ml) was added rapidly in a single portion to the orange-red suspension. The resulting orange suspension was stirred for 1.5 h , poured into aqueous 2 N -sodium hydrogensulphate (5 ml) and saturated aqueous sodium chloride (50 ml), and extracted with ethyl acetate (4×50 $\mathrm{ml})$. The combined extracts were washed with saturated aqueous sodium chloride ($1 \times 30 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give a gum. The experiment was then repeated on three times the scale.

The two crude products were combined, dissolved in chloroform (250 ml), and extracted with aqueous 8% sodium hydrogencarbonate ($1 \times 100 \mathrm{ml}, 2 \times 50 \mathrm{ml}$). The combined aqueous extracts were washed with chloroform ($2 \times$ 20 ml), acidified with aqueous 2 N -sodium hydrogensulphate, and extracted with ethyl acetate $(4 \times 50 \mathrm{ml})$. The combined organic extracts were washed with saturated aqueous sodium chloride ($1 \times 30 \mathrm{ml}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a gum. Short-column chromatography on silica gel $(220 \mathrm{~g})$ with acetic acid-ethyl acetate ($1: 50$) as eluant gave the acid (21) ($988 \mathrm{mg}, 73 \%$) as a gum; $\nu_{\text {max. }}$ (0.5% solution in $\left.\mathrm{CHBr}_{3}\right) 3585(\mathrm{OH}), 3490(\mathrm{OH}$, acid, monomer), 1735 ($\mathrm{C}=\mathrm{O}$, acid, monomer), 1705 ($\mathrm{C}=\mathrm{O}$, acid, dimer), and 970 $\mathrm{cm}^{-1}($ trans $-\mathrm{CH}=\mathrm{CH}) ; \tau\left(\mathrm{CDCl}_{3}\right) 4.16(3 \mathrm{H}, \mathrm{br}, \mathrm{s}, 3 \times \mathrm{OH})$, $4.4-4.7(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13$ and $\mathrm{H}-14), 4.7-5.1(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5)$, $5.8-6.3(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$ and $\mathrm{H}-15), 6.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 7-8.9$ (20 H , complex), and $9.10(3 \mathrm{H}, \mathrm{br}, \mathrm{t}, \mathrm{H}-20$) [Found (c.i. mass spec., $\left.\mathrm{NH}_{3}\right):\left(M+\mathrm{NH}_{4}\right)^{+}, 354.2658 . \quad \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$ requires $\left.\left(M+\mathrm{NH}_{4}\right), 354.2644\right]$. H.p.l.c. analysis $(20 \mathrm{~cm} \times 4.6$ mm Partisil 10; 24 : 1 ethyl acetate-acetic acid) showed the isomer ratio at the newly formed olefinic bond to be $62: 38$, with the less polar isomer predominating.
(\pm)-15-epi-9-Deoxy- $\Delta^{5}-6,9 \alpha-c y c l o p r o s t a g l a n d i n ~ \quad F_{1} \quad$ (22). -The less polar dihydroxy-ketone (4) ($1.008 \mathrm{~g}, 4 \mathrm{mmol}$), (4-carboxybutyl)triphenylphosphonium bromide (7.08 g, $16 \mathrm{mmol})$, and potassium t-butoxide $(3.60 \mathrm{~g}, 32 \mathrm{mmol})$ were used in a Wittig reaction in the manner described for its isomer (3) (single reaction only). Short-column chromatography on silica gel (220 g), eluting with acetic acid-ethyl acetate ($1: 100$), gave the acid (22) ($640 \mathrm{mg}, 48 \%$) as a gum; $\nu_{\text {max. }}\left(0.5 \%\right.$ solution in $\left.\mathrm{CHBr}_{3}\right) 3590(\mathrm{OH}), 3490(\mathrm{OH}$, acid, monomer), $1740(\mathrm{C}=\mathrm{O}$, acid, monomer), 1705 ($\mathrm{C}=\mathrm{O}$, acid, dimer), and $970 \mathrm{~cm}^{-1}$ (trans- $\left.\mathrm{CH}=\mathrm{CH}\right)$; $\tau\left(\mathrm{CDCl}_{3}\right) 4.25-4.75$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13$ and $\mathrm{H}-14$), $4.68(3 \mathrm{H}, \mathrm{br}, \mathrm{s}, 3 \times \mathrm{OH}), 4.65-$ $5.1(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 5.8-6.2(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$ and $\mathrm{H}-15), 6.75$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 6.9-8.9(20 \mathrm{H}$, complex), and $9.10(3 \mathrm{H}, \mathrm{br}$, $\mathrm{t}, \mathrm{H}-20$), with a $\mathrm{Eu}(\mathrm{fod})_{3}$ experiment indicating a $c a .3: 2$ isomer ratio at the newly formed olefinic bond [Found (c.i. mass spec., NH_{3}): $\left(M+\mathrm{NH}_{4}\right)^{+}, 354.2661 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$ requires $\left(M+\mathrm{NH}_{4}\right)$, 354.2644$]$.
(土)-9-Deoxy-la-homo- $\Delta^{5}-6,9 \alpha$-cycloprostaglandin F_{1} (23). -(5-Carboxypentyl)triphenylphosphonium bromide (3.0 g , 7.1 mmol) was added to a stirred solution of potassium t butoxide ($1.56 \mathrm{~g}, 14 \mathrm{mmol}$) in dry tetrahydrofuran (40 ml) under nitrogen. After 30 min , a solution of the more polar dihydroxy-ketone (3) ($300 \mathrm{mg}, 1.19 \mathrm{mmol}$) in dry tetrahydrofuran (15 ml) was added dropwise to the orange-red suspension. The resulting mixture was stirred for 45 min , poured into water $(30 \mathrm{ml})$, and washed with ether $(1 \times 30$ $\mathrm{m} 1)$ and ethyl acetate ($2 \times 30 \mathrm{ml}$). The aqueous layer was separated, acidified with 2 N -hydrochloric acid (10 ml), and extracted with ethyl acetate $(4 \times 40 \mathrm{ml})$. The combined extracts were washed with saturated aqueous sodium chlor-
ide (50 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give an orange oil (2.1 g). Short-column chromatography on silica gel (150 g), eluting with acetic acid-light petroleum-ethyl acetate ($1: 20: 180$), gave the acid (23) ($175 \mathrm{mg}, 42 \%$) as a pale straw coloured gum; $\nu_{\text {max. }}\left(0.5 \%\right.$ solution in $\left.\mathrm{CHBr}_{3}\right)$ $3590(\mathrm{OH}), 3500(\mathrm{OH}$, acid, monomer), $1745(\mathrm{C}=\mathrm{O}$, acid, monomer), 1705 (C=O, acid, dimer), and $970 \mathrm{~cm}^{-1}$ (trans$\mathrm{CH}=\mathrm{CH}) ; \tau\left(\mathrm{CDCl}_{3}\right) 4.15(3 \mathrm{H}, \mathrm{br}, \mathrm{s}, 3 \times \mathrm{OH}), 4.3-4.75$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13$ and $\mathrm{H}-14), 4.65-5.1$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), $5.85-$ $6.25(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$ and $\mathrm{H}-15), 6.76$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), $7-8.9$ (22 H , complex), and 9.10 ($3 \mathrm{H}, \mathrm{br}, \mathrm{t}, \mathrm{H}-20$) (Found: C, $72.0 ; \mathrm{H}, 10.15 . \quad \mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4}$ requires $\mathrm{C}, 71.95 ; \mathrm{H}, 9.8 \%$).

We thank Mr. Stuart N. Young for experimental assistance, Mr. E. J. Hornby for the platelet aggregation tests, and the staff of the Analytical Research Department and the Biochemical Pharmacology Department of Glaxo Group Research (Ware) Ltd., for spectroscopic and analytical data. In particular, we are grateful to Dr. G. Klinkert for the ${ }^{13} \mathrm{C}$ n.m.r. assignments.
[1/1477 Received, 22nd September, 1981]

REFERENCES

${ }^{1}$ W. Skuballa, Tetrahedron Lett., 1980, 3261.
${ }^{2}$ For nomenclature of prostacyclin analogues, see R. A. Johnson, D. R. Morton, and N. A. Nelson, Prostaglandins, 1978, 15, 737.
${ }^{3}$ S. Moncada, R. Gryglewski, S. Bunting, and J. R. Vane, Nature, 1976, 263, 663; S. Moncada and J. R. Vane, in 'Biochemical Aspects of Prostaglandins and Thromboxanes,' ed. N. Kharasch and J. Fried, Academic Press, New York, 1977, pp. 155-177.
${ }^{4}$ R. J. Gryglewski, A. Szczeklik, and R. Nizankowski, Thrombosis Res., 1978, 13, 153.
${ }^{5}$ K. C. Nicolaou, G. P. Gasic, and W. E. Barnette, A ngew. Chem. Int. Ed. Engl., 1978, 17, 293; W. Bartmann, G. Beck, J. Knolle, and R. H. Rupp, Angew. Chem. Int. Ed. Engl., 1980, 19, 819 and references therein.
${ }^{6}$ See R. F. Newton and S. M. Roberts, Tetrahedron, 1980, 36, 2183, and reference 7
${ }^{7}$ C. C. Howard, R. F. Newton, D. P. Reynolds, A. H. Wadsworth, D. R. Kelly, and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, 1980, 852.
${ }^{8}$ M. Miyashita, A. Yoshikoshi, and P. A. Grieco, J. Org. Chem., 1977, 42, 3772.
${ }^{9}$ E. G. Nidy and R. A. Johnson, J. Org. Chem., 1975, 40, 1415. 10 G. Zweifel and J. Plamondon, J. Org. Chem., 1970, 35, 898.
${ }^{11}$ S. Wolff, W. L. Schreiber, A. B. Smith, III, and W. C. Agosta, J. Am. Chem. Soc., 1972, 94, 7797; M. M. Cook and C. Djerassi, ibid., 1973, 95, 3678; D. S. Fullerton, C.-M. Chen, and I. H. Hall, J. Med. Chem., 1976, 19, 1391.
${ }_{12}$ S. J. Rhoads and N. R. Raulins, Org. React., 1975, 22, 15, 134-165.
${ }_{13}$ A. F. Thomas and M. Ozainne, J. Chem. Soc. (C), 1970, 220.
14 Prepared by similar methodology from the corresponding γ-lactone (P. A. Grieco, J. Org. Chem., 1972, 37, 2363).
${ }_{15}$ A. W. Burgstahler and I. C. Nordin, J. Am. Chem. Soc., 1961, 83, 198.
${ }_{16}$ H. C. Brown, R. Liotta, and C. G. Scouten, J. Am. Chem. Soc., 1976, 98, 5297.
${ }^{17}$ E. J. Corey and J. W. Suggs, Tetrahedron Lett., 1975, 2647.
18 J. B. Stothers, 'Carbon-13 NMR Spectroscopy,' Academic Press, London, 1972, p. 80.
${ }^{19}$ C. Gandolfi, presented in part at the Symposium ' Chemistry and Biochemistry of Prostanoids,' Salford, July 1978 (Chem. Br., $1979,15,86$)

20 A. Barco, S. Benetti, G. P. Pollini, P. G. Baraldi, and C. Gandolfi, J. Org. Chem., 1980, 45, 4776, and references therein.
${ }^{21}$ N. Whittaker, personal communication.
${ }^{22}$ C. D. Gutsche and D. Redmore, 'Carbocyclic Ring Expansion Reactions,' Academic Press, London, 1968, p. 84.
${ }^{23}$ D. R. Morton, jun., and F. C. Brokaw, J. Org. Chem., 1979, 44, 2880 .

[^0]: \dagger The presence of 3% of an isomeric lactone, discussed in ref. 7, was ignored and for all practical purposes did not interfere after the chromatographic purification of the vinyl ether (8).

